a2 United States Patent

US009323650B2

(10) Patent No.: US 9,323,650 B2

Pasala et al. (45) Date of Patent: Apr. 26, 2016
(54) METHODS FOR GENERATING SOFTWARE 6,321,376 B1* 112001 Willisetal. 717/124
TEST INPUT DATA AND DEVICES THEREOF 7,237,231 B2 6/2007 Lambert
7,644,334 B2 1/2010 Hickman et al.
. .. 7,926,114 B2 4/2011 Neystadt et al.
(71) Applicant: Infosys Limited, Bangalore (IN) 7.058.495 B2 6/2011 KJSO
7,979,846 B2 7/2011 Grechanik et al.
(72) Inventors: Anjaneyulu Pasala, Bangalore (IN); 2007/0038977 Al* 2/2007 Savage 717/106
Sharal Nisha Dsouza, Mangalore (IN); 2010/0037210 A1* 2/2010 Okadacooooovnvienernnns 717/125

Manuel Araoz, Buenos Aires (AR)
(73) Assignee: Infosys Limited, Bangalore (IN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 13/945,672

(22) Filed: Jul. 18, 2013
(65) Prior Publication Data

US 2014/0026125 Al Jan. 23, 2014
(30) Foreign Application Priority Data

Jul. 23,2012 (IN) o 3012/CHE/2012

(51) Imt.ClL

GO6F 9/44 (2006.01)

GO6F 11/36 (2006.01)
(52) US.CL

CPC .o, GO6F 11/3684 (2013.01)
(58) Field of Classification Search

CPC GOGF 11/3684

USPC 717/120-135
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7/1996 Cohen et al.
6/1999 Szermerccceouen. 714/38.1

5,542,043 A
5,913,023 A *

2012/0192153 Al* 7/2012 Venkatraman etal. 717/124
2012/0254665 Al* 10/2012 Pasalaetal. ... 714/33
2014/0157052 Al1* 6/2014 Campbell etal. 714/32

FOREIGN PATENT DOCUMENTS

WO 2005106649 A2 11/2005

OTHER PUBLICATIONS

Offutt et al., Generating test data from SOFL specifitions, 1999
Elsevier Science Inc., pp. 49-62.*

Dalal et al., Model-Based Testing in Practice, ICSE *99 Los Angeles
AC, ACM, pp. 285-294.*

(Continued)

Primary Examiner — Satish Rampuria
(74) Attorney, Agent, or Firm —LeClairRyan, a
Professional Corporation

(57) ABSTRACT

A method, non-transitory computer readable medium, and
apparatus that extracts a plurality of attributes from a software
requirements specification wherein each attribute is associ-
ated with a data type and one or more properties. Constraint
representation syntax is applied to the extracted attributes
based on the data type and the one or more properties asso-
ciated with each attribute to generate a plurality of con-
straints, wherein the constraint representation syntax is a
machine readable format. Each of the plurality of constraints
is output and optionally associated with one or more nodes of
a specification requirements model.

15 Claims, 5 Drawing Sheets

Extract a Plurality of Attributes from a Software Requirements
Specification Wherein Each Attribute is Associated with a Data
Type and One or More Properties
200

Apply a Constraint Representation Syntax to the Extracted
Atributes Based on the Data Typa and the Ona or Mare Praperties
Associated with Each Attribute to Generate a Plurality of Constraints
202

Outout the Plurallty of Constraints
204

Generate a Model Representing One or Mare Use Cases Specified
by the Software Requirements Specification Wherein the Mode!
Includes & Pluraity of Paths Including One or Mare Conditional

Nodes Associated with One or More of the Plurality of Constraints
208

Generate Test Input Data for One of the Plurality of Paths Based on
the One or More of the Plurality of Constraints Associated with the
One or More Conditional Nodes Included in the One Path

208

Test Software Developed Based on the Software Requirsments
Spacification Using the Generated Test Input Data

US 9,323,650 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Offutt et al., Generating test data from state-based specifications,
Software Testing, Verification and Reliability Softw. Test. Verif.
Reliab., John Wiley & Sons, Ltd., 2003; pp. 25-53.*

Cardelli, Luca, and Peter Wegner. “On understanding types, data
abstraction, and polymorphism.” ACM Computing Surveys (CSUR)
17.4 (1985), pp. 471-523 *

Guttag, John'V., Ellis Horowitz, and David R. Musser. “Abstract data
types and software validation.” Communications of the ACM 21.12
(1978): pp. 1048-1064.*

Visser, Eelco. “Stratego: A language for program transformation
based on rewriting strategies system description of stratego 0.5
Rewriting techniques and applications. Springer Berlin Heidelberg,
2001. pp. 357-361.*

Bashir et al. “Automated Model Based Software Test Data Genera-
tion System,” International Conference on Emerging Technologies,
IEEE-ICET, pp. 275-279 (Oct. 18-19, 2008).

Zhao et al., “Automatic Test Generation for Dynamic Data Struc-
tures”, Sth ACIS International Conference on Software Engineering
Research, Management & Applications, pp. 545-549 (2007).
Mahmood, S., “A Systematic Review of Automated Test Data Gen-
eration Techniques”, Blenkinge Institute of Technology (Oct. 2007)
source: http://www.bth.se/fou/cuppsats.nsf/all/
f3f9831872¢2f373¢12573a0003e6b44/$file/shahidMTSE2007-26.
pdf.

Edvardsson, J., “A Survey on Automatic Test Data Generation,”
Proceedings of the Second Conference on Computer Science and
Engineering, pp. 21-28, (Oct. 1999).

Guptaet al., “Generating Test Data for Branch Coverage”, 15th IEEE
International Conference on Automated Software Engineering, pp.
219 (2000).

Korel, B., “Automated Software Test Data Generation”, IEEE trans-
actions on Software Engineering, 16(8):870-879 (Aug. 1990).
Gupta et al., “UNA Based Iterative Test Data Generation and Its
Evaluation”, Proceedings of the 14th IEEE International Conference
on Automated Software Engineering, pp. 224 (1999).

Clarke, L.A., “A System to Generate Test Data and Symbolically
Execute Programs”, Software Engineering, IEEE Transactions, vol.
SE—2(3), pp. 215-222 (Sep. 1976).

WeiBleder et al., “Automatic Test Generation from Coupled UML
Models using Input Partitions”, MoDeVVA—4th Int. Workshop on
Model-Driven Engineering, Verification and Validation (Oct. 2007).
Bin et al., “Automatic Test Data Generation Tool Based on Genetic
Simulated Annealing Algorithm”, Proceedings of the 2007 Interna-
tional Conference on Computational Intelligence and Security Work-
shops, pp. 183-186, (2007).

Deason et al., “A Rule-Based Software Test Data Generator”, IEEE
Transactions on Knowledge and Data Engineering, 3(1):1041-4347
(Mar. 1991).

Gotlieb et al., “Automatic Test Data Generation using Constraint
Solving Techniques”, ACM SIGSOFT Software Engineering, pp.
53-62 (Mar. 1998).

Wang et al., “An Adaptive Framework for Test Data Generation from
Business Specification,” International Conference on Information
Technology and Computer Science (2009).

Wang et al., “Test Data Generation for Derived Types in C Program,”
Third IEEE International Symposium on Theoretical Aspects of Soft-
ware Engineering (2009).

Utting et al., “A Taxonomy of Model-Based Testing,” Working Paper
Series ISSN 1170-487X, pp. 1-17 (Apr. 2006).
“TTmodeler—Model-Based Testing with UTP and TTCN-3,”
source: http://www.testingtech.com/products/ttplugins_ modeler.
php, retrieved on Mar. 12, 2012.

Salima et al., Enhancing the Efficiency of Regression Testing through
Intelligent Agents, in the Proceedings of the Conference on Compu-
tational Intelligence and Multimedia Applications, pp. 103-108
(2007).

Jones, E.L., “Integrating Testing into the Curriculum—Arsenic in
Small Doses,” ACM SIGCSE Bulletin, vol. 33 (1):337-341 (2001).
Gorthi et al., Model-Based Automated Test Case Generation,
SETLabs Briefings, vol. 6, No. 1, pp. 39-46 (2008).

Dalal et al., “Model-Based Testing in Practice,” to appear in Proceed-
ings of ICSE 99 (ACM Press) 10 pp. (1999).

Dai, Z.R., “Model-Driven Testing with UML 2.0,” Computing Labo-
ratory, University of Kent, 9 pp. (2004).

* cited by examiner

US 9,323,650 B2

Sheet 1 of 5

Apr. 26,2016

U.S. Patent

l Ol

0c MowsN
. 2¢ 921ne(
8L NdD aoeLau|
vz JI0MIBN

Z1 shijeseddy
Bunndwo) uolnessuss) ejed 1sel

ol

gl JJoMmieN
uonesIunwwo)

71 9@o1neQ
Bunndwon
3o

U.S. Patent Apr. 26,2016 Sheet 2 of 5 US 9,323,650 B2

Extract a Plurality of Attributes from a Software Requirements
Specification Wherein Each Attribute is Associated with a Data
Type and One or More Properties
200

v

Apply a Constraint Representation Syntax to the Extracted
Attributes Based on the Data Type and the One or More Properties
Associated with Each Attribute to Generate a Plurality of Constraints

202

v

Output the Plurality of Constraints
204

v

Generate a Model Representing One or More Use Cases Specified
by the Software Requirements Specification Wherein the Model
Includes a Plurality of Paths Including One or More Conditional

Nodes Associated with One or More of the Plurality of Constraints
206

v

Generate Test Input Data for One of the Plurality of Paths Based on
the One or More of the Plurality of Constraints Associated with the ¢
One or More Conditional Nodes Included in the One Path
208

v

Store the Generated Test Input Data
210

More Paths? Yes

212

Test Software Developed Based on the Software Requirements
Specification Using the Generated Test Input Data
214

FIG. 2

US 9,323,650 B2

Sheet 3 of 5

Apr. 26,2016

U.S. Patent

S E

uesjoog €—
||qno(/ jeoj4
Jabayu|
JLUBWNN All.lul.
oleq ¢—— |
siejoeleY) [erads + sjeqeydly g————
siajoeley [e1oadg + sioquinN + sjeqeydly €——
siequin + sjeqeydly €————
suswnueydly ¢————
sjeqeydly €———
Bulls €——
sadA] ejeq

U.S. Patent Apr. 26, 2016

406

User enters
Password.

Password
<C> A[5-8, C[3-5,ncr], N[1-2,ner],
S[1,i(#,9,%.%.*.@,&)]]
402

‘; Yes

Enter value for
‘X" and ‘Y’

!

User enters the
value for
(XY and (Y)

0<X<100=Yes,0<Y¥Y<
200 =Yes, X>Y
404

‘X' and Y’
are in the
required range.

é/ 408

Sheet 4 of 5

US 9,323,650 B2

Password does not conform to
the complexity requirements.
Please try again.

No

400

Not desired
values for
‘X and Y’

é)/mo

FIG. 4

US 9,323,650 B2

Sheet 5 of 5

Apr. 26,2016

U.S. Patent

G Old

NUOSY%U = PIOMSSE(‘uieBbe A1 asesid oN =[[(®' ‘piomssed L €
€AY9,}3 = PIOMSSEd | -sjuawialinbas Aixejdwios | @'\'v'% ' $#I'LIS| sisus desn
{o#wridn+ = piomssed oy} 0} uuojuod | ‘[1ou‘g-LIN ‘frou'g
140.dO = plomssed ‘
OU S30p piomsse - -Glv <0>
N = piomssed } PP d MU_O wﬁu._mnu“_\%wwwn_
L=A6=X A, bue ON A pue X, 4 4
L8=A OV =X | « JojsenjenpansepoN| =A<X'SSA=| Jojanjen ay}
00L =A 08 =X 00Z > A >0 'SeA si9)Ud Jasn
9lL=A9F=X =00L>X>0
6.1 =A’'06 =X -
bIZ=A0L =X
JI09% = PIOMSSEd |) pue X, 104 anjeA Jaug soA =% ‘plomssed L 4
v = piomssed SV % S#ILIS siajus lesn
mé?mNzO = plomssed ‘[ou‘z-LIN ‘ou's
1P8S®z3 = plomssed eln ‘g-
ISZ8, = plomssed €10 wv MNmAmWM
WINYMZZG = PJIOMSSEH
9=AEL=X "aBuels pasinbal SOA A, Pue X, Z L
mw = » ww Hw aujuiale A, pue X, | =A<X'SOA=| Jojanjeaay
vmm>;mmx 00Z > A >0 SOA sJajus Jesn
58= A'66 =X =00l >X>0
/]
00s S=A'g=¥X
1D9% = PIOMSSEd|) pue X, J0j SNjeA 18U saA = [(%' "piomssed L L
PuMAD = pIOmssed “V% SIS | siowe sesn
X1B,SZNQ = piomssed ‘[1ou'z-1IN ‘[ou's
61 pas® 3 = pilomssed -¢]9 ‘g-5ly <0>
ISZ9, = plomssed
WIAI%MZZ9 = PJOMSSEH plomssed
SyeWay eleq isa] | Inding wajshs pajoadx] suonIpuo) Indujdasn | JequinN | Jaquiny ase)
dajg }so] | /oueusng 1sa)

US 9,323,650 B2

1
METHODS FOR GENERATING SOFTWARE
TEST INPUT DATA AND DEVICES THEREOF

This application claims the benefit of Indian Patent Appli-
cation Filing No. 3012/CHE/2012, filed Jul. 23, 2012, which
is hereby incorporated by reference in its entirety.

FIELD

This technology generally relates to software testing and,
more particularly, to methods and devices for generating soft-
ware test input data.

BACKGROUND

Software testing accounts for a substantial portion of the
software development life cycle as well as the total cost of a
software development project. Software testing can include
test scenario creation, test input data creation, and test execu-
tion. Effective software testing is critical to providing high
quality software that meets established functional require-
ments and is free of bugs and defects.

Meaningful and exhaustive test input data sets can increase
the effectiveness of software testing. However, currently, test
input data is often manually created through an expensive
process that requires significant resources and time and that is
susceptible to error. Additionally, current techniques often
produce test input data that is not comprehensive with respect
to the possible data types and/or properties of the software
input variables.

SUMMARY

A method for generating software test input data includes
extracting, with a test data generation computing apparatus, a
plurality of attributes from a software requirements specifi-
cation wherein each attribute is associated with a data type
and one or more properties. Machine-readable constraint rep-
resentation syntax is applied, with the test data generation
computing apparatus, to the extracted attributes based on the
data type and the one or more properties associated with each
attribute to generate a plurality of constraints. Each of the
plurality of constraints is output with the test data generation
computing apparatus.

An apparatus for generating software test input data
includes a processor coupled to a memory and configured to
execute programmed instructions stored in the memory
including extracting a plurality of attributes from a software
requirements specification wherein each attribute is associ-
ated with a data type and one or more properties. Machine-
readable constraint representation syntax is applied to the
extracted attributes based on the data type and the one or more
properties associated with each attribute to generate a plural-
ity of constraints. Each of the plurality of constraints is output

A non-transitory computer readable having stored thereon
instructions for generating software test input data compris-
ing machine executable code which when executed by a pro-
cessor, causes the processor to perform steps including
extracting a plurality of attributes from a software require-
ments specification wherein each attribute is associated with
a data type and one or more properties. Machine-readable
constraint representation syntax is applied to the extracted
attributes based on the data type and the one or more proper-
ties associated with each attribute to generate a plurality of
constraints. Each of the plurality of constraints is output

This technology provides a number of advantages includ-
ing methods, non-transitory computer readable medium, and

10

15

20

25

30

35

40

45

50

55

60

65

2

devices that automatically generate exhaustive software test
input data based on a requirement specification for the soft-
ware. With this technology, test input data for a plurality of
attribute or input variable data types and properties can be
generated. The generated test input data can then be utilized to
more effectively test the software. As a result, resources
required to generate comprehensive software test input data
and thoroughly test software are reduced and software quality
is improved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram of a network environment which
incorporates an exemplary test data generation computing
apparatus for generating software test input data;

FIG. 2 is a flowchart of an exemplary method for generat-
ing software test input data;

FIG. 3 is a diagram of an exemplary data type hierarchy
used to define an exemplary constraint representation syntax
used in the exemplary method for generating software test
input data of FIG. 2;

FIG. 4 is an exemplary model generated by the exemplary
test data generation computing apparatus of FIG. 1; and

FIG. 5 is a table including exemplary test input data gen-
erated by the exemplary test data generation computing appa-
ratus of FIG. 1 based on the exemplary model of FIG. 4.

DETAILED DESCRIPTION

A network environment 10 with an exemplary test data
generation computing apparatus 12 is illustrated in FIG. 1.
The environment 10 includes the test data generation com-
puting apparatus 12 and a client computing device 14,
coupled together by one or more communication networks
16, although this environment 10 can include other numbers
and types of systems, devices, components, and elements in
other configurations, such as multiple numbers of each of
these apparatuses and devices. This technology provides a
number of advantages including methods, non-transitory
computer readable medium, and devices that more effectively
generate software test input data.

The test data generation computing apparatus 12 includes
a central processing unit (CPU) or processor 18, a memory
20, and a network interface device 22 which are coupled
together by a bus 24 or other link, although other numbers and
types of systems, devices, components, and elements in other
configurations and locations can be used. The processor 18 in
the test data generation computing apparatus 12 executes a
program of stored instructions for one or more aspects of the
present technology as described and illustrated by way of the
examples herein, although other types and numbers of pro-
cessing devices and logic could be used and the processor
could execute other numbers and types of programmed
instructions.

The memory 20 in the test data generation computing
apparatus 12 stores these programmed instructions for one or
more aspects of the present technology as described and
illustrated herein. However, some or all of the programmed
instructions and database could be stored and/or executed
elsewhere such as at the client computing device 14, for
example. A variety of different types of memory storage
devices, such as a random access memory (RAM) and/or read
only memory (ROM) in the test data generation computing
apparatus 12 or a floppy disk, hard disk, CD ROM, DVD
ROM, or other computer readable medium which is read from
and written to by a magnetic, optical, or other reading and

US 9,323,650 B2

3

writing system that is coupled to the processor 18 in the test
data generation computing apparatus 12, can be used for the
memory 20.

In one example, the network interface device 22 of the test
data generation computing apparatus 12 operatively couples
and facilitates communication between the test data genera-
tion computing apparatus 12 and the client computing device
14 via the communications network 16, although other types
and numbers of communication networks or systems with
other types and numbers of connections and configurations
can be used. By way of example only, the communications
network could use TCP/IP over Ethernet and industry-stan-
dard protocols, including NFS, CIFS, SOAP, XML, LDAP,
and/or SNMP, although other types and numbers of commu-
nication networks, such as a direct connection, a local area
network, a wide area network, each having their own com-
munications protocols, can be used.

The client computing device can include a central process-
ing unit (CPU) or processor, a memory, a network interface
device, and an input and/or display device interface, which
are coupled together by a bus or other link, although other
numbers and types of network devices could be used. The
client computing device may run interface applications that
provide an interface to make requests for and send content
and/or data to different applications or services provided by
the test data generation computing apparatus 12 via the com-
munication network 16.

Although examples of the test data generation computing
apparatus 12 are described herein, it is to be understood that
the devices and systems of the examples described herein are
for exemplary purposes, as many variations of the specific
hardware and software used to implement the examples are
possible, as will be appreciated by those skilled in the relevant
art(s). In addition, two or more computing systems or devices
can be substituted for any one of the systems in any embodi-
ment of the examples.

The examples may also be embodied as a non-transitory
computer readable medium having instructions stored
thereon for one or more aspects of the present technology as
described and illustrated by way of the examples herein, as
described herein, which when executed by a processor, cause
the processor to carry out the steps necessary to implement
the methods of the examples, as described and illustrated
herein.

An exemplary method for generating software test input
data will now be described with reference to FIGS. 1-5. In this
particular example, in step 200, the test data generation com-
puting apparatus 12 extracts a plurality of attributes from a
software requirements specification. In one example, the test
data generation computing apparatus 12 obtains the software
requirements specification, such as submitted by a user of the
client device 14 and/or stored in memory 20, for example, and
parses the software requirements specifications to identify
and extract all of the attributes or input variables and their
associated data types and other properties.

At step 202, the test data generation computing apparatus
12 generates a plurality of constraints by applying constraint
representation syntax to the extracted attributes based on the
data type and the properties associated with each attribute.
One exemplary constraint representation syntax including a
machine readable format is described herein, although other
syntaxes can be used. In some examples, the test data genera-
tion computing apparatus 12 parses the software require-
ments specifications to extract the attributes and the data
types and/or properties of the attributes.

In other examples, the test data generation computing
apparatus 12 generates the plurality of constraints based on

10

15

20

25

30

35

40

45

50

55

60

65

4

information obtained from a user of the client computing
device 14 including the attributes, and/or data types or prop-
erties of the attributes, as specified in the software require-
ments specification. Additionally, in some examples, the plu-
rality of constraints can be generated by the test data
generation computing apparatus 12 based on information
obtained from a user of the client computing device 14 includ-
ing one or more representations of the data types and/or
properties of the attributes specified based on the constraint
representation syntax.

Referring to FIG. 3, a diagram of an exemplary data type
hierarchy used to define the exemplary constraint represen-
tation syntax is shown. The hierarchy includes string,
numeric, and Boolean data types as well as subtypes includ-
ing alphabets, alphanumeric, and date for the string data type,
alphabets and numbers, alphabets numbers and special char-
acters, and alphabets and special characters for the alphanu-
meric subtype of the string data type, and integer and float or
double for the numeric data type.

In this example, each of the string and numeric subtypes
are associated with an identifier such as one or more of the
exemplary identifiers shown Table 1, although other numbers
and types of identifiers can be used.

TABLE 1
Identifier Description of Representation of the Identifier
A Alphanumeric string
C Character string consisting of alphabets only
cC Character string consisting of uppercase alphabets only
CS Character string consisting of lowercase alphabets only
N Numeric or number type [integer and decimal/float/double]
S Special characters allowed in the alphanumeric strings
D Date string

In this exemplary constraint representation syntax, the
properties of an attribute of a numeric data type can be rep-
resented as “N [Int, Deci]”, where “N” is defined in Table 1,
“Int” represents a total number of digits and the optional
“Deci” represents a number of digits in a fractional part in the
case of a decimal number. Additionally, the properties of an
attribute of a numeric data type are represented as “~N” in the
case of negative values.

Accordingly, in one exemplary application of the exem-
plary constraint representation syntax to an attribute of a
numeric data type, “N [5, 0] or “N [5]” represents an integer
number with five digits in length. In another example, “N [5,
2]” represents a decimal number with five digits in length in
which the integer part is three digits and the fractional part is
two digits. Additionally, in this example, the decimal point is
not counted as a part of the length. In yet another example, a
decimal value less than 1 but more than 0 (e.g. 0.99) and less
than 0 but more than -1 (e.g. —0.99) can be represented as
“N[2,2]” and “-NJ[2, 2]”, respectively, because they each
have two total digits, each of which is a fractional part of the
positive or negative decimal number.

In this exemplary constraint representation syntax, the
properties of an attribute of a date data type can be repre-
sentedas “D[DD/MM/YYYY]”, “D[DD-MM-YYYY]”,“D
[DD/MM/YY]”, “D [DD-MM-YY]”, “D [MM/DD/YY
YY1, “D [MM-DD-YYYY]”, “D [MM/DD/YY]”, and/or
“D [MM-DD-YY]”, where “D” is defined in Table 1, “DD”
represents a day, “MM” represents a month, and “YYYY” or
“YY” represents a year in numerical format.

In this exemplary constraint representation syntax, the
properties of an attribute of a string data type can be repre-
sented as “A/C[Total_Length_Of_Attribute, Stringl[],

US 9,323,650 B2

5

String?2[], String3][], . . . Stringn[]]”, where each of String1-
n[] can be represented as “C/CC/CS/N/S [Length Include
Not-Include Position]” and where “A”, “C”, “CC”, “CS”,
“N”, and “S” are defined in Table 1. In this example, the
alphanumeric string subtype consists of characters, numbers,
and special characters and the alphabets string subtype con-
sists of both lowercase and uppercase letters of the character
set A-Z. Accordingly, if the representation is prefixed with an
“A”, it represents an alphanumeric string and, if prefixed with
a “C”, it represents a character or alphabets string.

In this example, the optional “Total Length Of Attribute”
specifies the length of the string, both in fixed or variable
lengths. In one example, “C[5]” represents an alphabets or
character string consisting of five characters in length. Vari-
able length can be specified using a range including the mini-
mum and maximum number of characters such as “C[min-
max|” where “min” is the minimum number of characters and
“max” represents the maximum number of characters
allowed. Accordingly, in this example, “C[5-10]” represents
an alphabets or character string having a total length from five
to ten characters. Additionally, in this exemplary constraint
representation syntax, when include, not-include, or position
related constraints/properties are included in a representa-
tion, as discussed and illustrated in detail below, the “Total_
Length_Of_Attribute” must be specified.

In this exemplary constraint representation syntax, an
optional “include” field can be used to specify a permissible
set of characters, numerals, and/or special characters as speci-
fied by the one or more properties associated with one or more
of'the extracted attributes. In one example, the permissible set
of characters can be included in the representation as prefixed
by an “1”. In this example, “C[5, 1(A-Z)]” represents an alpha-
bets or character strings consisting of five uppercase charac-
ters only. Accordingly, in this exemplary constraint represen-
tation syntax, “C[5, i(A-Z)]” and “CC[5]” are equivalent
representations as are “C[5, i(a-z)|” and “CS[5]”.

In this exemplary constraint representation syntax, an
optional “not-include” field can be used to specify a non-
permissible set of characters, numerals, and/or special char-
acters, as specified by the one or more properties associated
with one or more of the extracted attributes. In one example,
the non-permissible set of characters can be included in the
representation as prefixed by a “ni”. In this example, “C[5,
ni(A-D)]” represents an alphabets or character string consist-
ing of five characters of the default full set of characters or
alphabets with the exception of uppercase characters in the
range from A to D.

In this exemplary constraint representation syntax, an
optional “position” field can be used to specify a particular
syllable or set of characters, numerals, and/or special charac-
ters that must be included at a specified position(s) in the
string, as specified by the one or more properties associated
with one or more of the extracted attributes. In one example,
the position, and the characters, numerals, and/or special
characters required to be present at the position, can be in
included in the representation as prefixed by a “p”. In this
example, “C[5, pl->R]” represents an alphabets or character
string consisting of five characters wherein the first character
must be an uppercase “R”.

Additionally, an optional “~” can be used proximate the
“p” prefix to represent a set of characters, numerals, and/or
special characters that are not permitted to be located at the
specified position, as specified by the one or more properties
associated with one or more of the extracted attributes.
Accordingly, in this example, “A[5-6, C[3-4], S[2, p~1]]"
represents an alphanumeric string of five to six characters,
three to four of which are alphabets and two of which are

10

15

20

25

30

35

40

45

50

55

60

65

6

special characters wherein neither of the special characters
can be the first character of the alphanumeric string.

Also optionally, repetitive sets of characters can be speci-
fied by prefixing a string by an integer representing the num-
ber of repeating characters. In one example, an “IP_address”
attribute has associated properties requiring three sets of 1-3
numbers, each of which is followed by a decimal or period
special character. Following the repeating sets, a fourth set of
1-3 numbers is included. Accordingly, in this example,
“A[3(N [1-3] S[1 i.]), N[1-3]]” can be used to represent the
properties of the “IP address™ attribute and the number “3”
prefix indicates the repetitive sets. This exemplary represen-
tation requires an alphanumeric string with three sets of num-
bers of 1-3 digits each followed by a string of one special
character, specified by the “include” field as the “’ character,
and followed by another number of 1-3 digits.

In order to generate, at step 202, the plurality of constraints
based on the representations of the data types and the one or
more properties of the extracted attributes, a syntax can be
used such as, “[attributeName] <C> [properties as repre-
sented based on the constraint representation syntax|”.
Accordingly, the constraints can be a representation of the
relationship between a name of an extracted attribute and the
data type and/or one or more properties of the extracted
attribute. In the event two or more attributes have the same the
data type and/or one or more properties, a constraint can be
generated wherein the two or more attribute names are speci-
fied as separated by a “,” such as “FName, LName <C>
A[6-9]”, for example.

In one example, a software requirement specification
specifies a “password” attribute that is an input variable rep-
resenting a password input by a user of the software, such as
during a registration process. In this example, the software
requirement specification additionally specifies the following
properties for the “password” attribute:

[1] The password is an alphanumeric string with a combi-

nation of alphabets, numbers, and special characters.

[2] The password must have a minimum of 8 and a maxi-

mum of 12 characters in length.

[3] The password must consist of at least two numerals.

[4] The password must have two special characters.

[5] The permissible set of special characters are #, $, %, ",

&, *, and @.

[6] The password must not contain any blank spaces.

[7] The first character of the password must be a capital

letter.

In this example, at step 202, the test data generation com-
puting apparatus can generate a constraint for the “password”
attribute based on the exemplary constraint representation
syntax described and illustrated herein. Accordingly, an
exemplary constraint generated in step 202 for the “pass-
word” attribute can be “password <C> A[8-12, C[pl->A-Z],
N[2-10], S[2,i(#,$,%,".&,*,@)]]”.

At step 204, the test data generation computing apparatus
12 outputs the plurality of constraints generated in step 202.
The outputting can be to the client computing device 14 or to
the memory 20, for example. Optionally, the plurality of
constraints can be used to in model-based test input data
generation as described and illustrated in detail with respect
to steps 206-214.

At step 206, the test data generation computing apparatus
12 generates a model representing one or more use cases
specified by the software requirements specification. In some
examples, the test data generation computing apparatus 12
parses the software requirement specification to extract the
use cases and generate the model. In other examples, the test
data generation computing apparatus 12 generates the model

US 9,323,650 B2

7

based on information obtained from a user of the client com-
puting device 14 including behavior, use cases, scenarios,
and/or flows of the software, as specified in the software
requirements specification.

In this example, the model includes a plurality of paths
including one or more conditional nodes associated with one
or more of the plurality of constraints. Optionally, the model
is a uniform modeling language (UML) structured use case
activity diagram (UCAD) including at least one start node and
at least one end node. Each path can include one of the start
nodes and one of the end nodes or one of the start nodes and
a cycle or loop, although other path definitions can be used.

Referring to FIG. 4, an exemplary model 400 generated by
the test data generation computing apparatus 12 is shown. The
model 400 includes a start node 406 and two end nodes 408
and 410 and represents an exemplary registration process of a
software application. In the exemplary registration process
represented by the model 400, a user enters a password and,
when authenticated, the user enters two additional values (X
andY in this example) in order to gain access. The model also
includes two exemplary conditional nodes 402 and 404. The
constraint representing the “password” attribute and associ-
ated properties, as described and illustrated earlier, has been
inserted by the test data generation computing apparatus 12 at
conditional node 402. In some examples, the model can
include conditions that are not represented as constraints in
the constraint representation language but are in a machine
readable format such as the conditions specified in condi-
tional node 404.

At step 208, the test data generation computing apparatus
12 generates test input data for one of the plurality of paths
included in the model generated in step 204. The test input
data is generated based on the constraints inserted into the
model and associated with one or more conditional node(s)
included in the path. Accordingly, in one example, the test
data generation computing apparatus 12 traverses the path to
extract the encountered constraints, which are represented in
a machine readable format based on the constraint represen-
tation syntax. The extracted constraints can form a path predi-
cate associated with at least one path. Optionally, the test data
generation computing apparatus 12 validates the constraints
by determining whether the constraints include proper con-
straint representation syntax that is able to be effectively
interpreted.

In one example, the test data generation computing appa-
ratus 12 can apply a boundary value, equivalence partition-
ing, or a genetic algorithm test input data generation tech-
nique based on the path predicate and/or extracted constraints
in order to generate the test input data for the one path. One
exemplary genetic algorithm is described herein, although
other genetic algorithms and other test input data generation
techniques can be used.

In this exemplary genetic algorithm, it is assume that the
constraint representation syntax of the path predicate has
been parsed by the test data generation computing apparatus
12 and the predicate indicates three conditions including that
input variable attributes “x” and “y”” must be greater than zero
and “x” must be greater than “y”. Accordingly, in a first step,
the test data generation computing apparatus 12 generates an
initial population of a random size including randomly gen-
erates integers for each of the attributes. In this example the
initial population is five and the randomly generated integers
for each set (“x”, “y”) of the five are (-9, 4), (3.,8), (-1,9),
(-2,-3), and (0,4).

In a second step, the test data generation computing appa-
ratus 12 generates a fitness value for each individual set of the
population based on how many of the conditions specified by

8

the predicate are satisfied. Exemplary individual sets of the
population, conditions, and fitness values for this example are
shown in Table 2.

5 TABLE 2
Condition 1 Condition 2 Condition 3
Individual (x>0) (y>0) (y >0) Fitness
(=9, 4) NO YES NO 1
10 (3, 8) YES YES NO 2
(-1,9) NO YES NO 1
(-2,-3) NO NO YES 1
(0, 4) NO YES NO 1
15 Inathirdstep, the test data generation computing apparatus

12 selects individuals such that individuals with a higher
associated fitness value are more likely to be selected and
randomly generates two new individual sets. Accordingly, in
this example, (3,8) is selected as it has the highest fitness
value and satisfies the highest number of conditions. Ran-
domly, (0,4) is also selected to be combined with (3,8) to
produce (3,4) and (-1,9) is selected to be combined with (3,8)
to produce (-1,8).

In a fourth step, the test data generation computing appa-
ratus 12 applies a mutation based on a mutation probability
(e.g. 0.25) to each of the generated two new individual sets to
generate two new individual sets. In this example, the result-
ing individual sets can be (3,3) as mutated from (3,4) and
(-1,8) as mutated from (-1,8). As a result of the mutation
probably, in this example, one of the individual sets was
unchanged in this step.

With the mutated individual sets, in a fifth step, the test data
generation computing apparatus 12 generates a new popula-
tion. Optionally, the three individual sets with the highest
fitness value are combined with the two mutated individual
sets to form the second population. In this example, the
mutated sets (3,3) and (-1,8) are combined with (3,8) which
has the highest fitness value in the initial population and
(-9,4) and (-1,9) which are chosen randomly since the
remaining sets of the initial population have the same fitness
value.

Optionally, the second through fifth steps can be repeated
until an specified number of iterations are performed or until
an individual set satisfies the path predicate and the popula-
tion has converged. In one exemplary operation of the exem-
plary genetic algorithm described herein, in an additional two
iterations of the second through fifth steps, the test data gen-
eration computing apparatus 12 generates a population which
has converged based on the (5,4) set satistying the path predi-
cate, as shown in Table 3.

20

25

30

35

40

45

50

TABLE 3

Condition 3
v>0)

Condition 2
v>0)

YES
YES
YES
YES
YES

Condition 1

55 Individual (x>0) Fitness

NO
YES
YES
YES
YES

=9,4)
G.8)
G,3)
G, 4
G.3)

Z
@)
R W N

60

At step 210, the test data generation computing apparatus
12 optionally stores the generated test input data such as in the
memory 20. The test input data can be stored in a database, a
spreadsheet, and/or a hypertext markup language (HTML)
document, for example, although any other output location
and format can be used. Additionally, the generated test input

US 9,323,650 B2

9

data can be sent by the test data generation computing appa-
ratus 12, using the network interface device 22, to the client
device 14 over the communication network 16.

At step 212, the test data generation computing apparatus
12 determines whether there are more paths in the model
generated in step 206 for which test input data has not been
generated in step 210. One or more of the paths included in the
model can be identified by the test data generation computing
apparatus 12 by applying a depth first search algorithm. If the
test data generation computing apparatus 12 determines there
are more paths in the model, the Yes branch is taken to step
208.

Optionally, steps 208-212 are repeated for all paths
included in the model, although test input data can be gener-
ated for only a subset of the paths included in the model.
Accordingly, when the test data generation computing appa-
ratus 12 determines, at step 212, that test input data has been
generated, at step 210, for all or a specified number of paths
such that there are no additional paths, the No branch is taken
to step 214.

At step 214, the test data generation computing apparatus
12 optionally tests the software developed based on the soft-
ware requirement specification model using the generated
test input data. In some example, the test input data is stored
and/or output by the test data generation computing apparatus
12 at step 208 and used by another computing device and/or
the user of the client computing device 14 to test the software.

Referring specifically to FIG. 5, a table 500 is shown as
including exemplary test input data generated by the test data
generation computing apparatus 12 based on the exemplary
model 400 shown in FIG. 4 and the genetic algorithm
described and illustrated earlier. In this example, model 400
includes three paths corresponding to the three test scenarios
identified in table 500. In the first scenario, the password
constraint of the conditional node 402 is satisfied and the
conditions in the conditional node 404 are also satisfied. In
the second scenario, the password constraint of the condi-
tional node 402 is satisfied but the conditions in the condi-
tional node 404 are not satisfied. In the third scenario, which
only requires one test step, the password constraint of the
conditional node 402 is not satisfied and, in the path associ-
ated with this scenario, the conditional node 404 is not tra-
versed.

The exemplary test input data shown in table 500, and
generated by the test data generation computing apparatus 12,
is comprehensive with respect to every scenario of the regis-
tration system software modeled in model 400. The test input
data in table 500 includes data that satisfies and does not
satisfy every encountered constraints and/or conditions for
every possible path in the model 400 thereby providing a test
input data set that allows for effective testing of the software.

By this technology, more effective and comprehensive test
input data capable of testing all use cases and behaviors of a
software product can be automatically generated. As a result,
fewer resources are required to generate software test input
data and software can be more effectively tested resulting in
higher quality software with fewer bugs and defects.

Having thus described the basic concept of the invention, it
will be rather apparent to those skilled in the art that the
foregoing detailed disclosure is intended to be presented by
way of example only, and is not limiting. Various alterations,
improvements, and modifications will occur and are intended
to those skilled in the art, though not expressly stated herein.
These alterations, improvements, and modifications are
intended to be suggested hereby, and are within the spirit and
scope of the invention. Additionally, the recited order of pro-
cessing elements or sequences, or the use of numbers, letters,

15

20

25

30

35

40

45

50

55

60

10

or other designations therefore, is not intended to limit the
claimed processes to any order except as may be specified in
the claims. Accordingly, the invention is limited only by the
following claims and equivalents thereto.

What is claimed is:

1. A method for generating software test input data, com-
prising:

extracting, by a test data generation computing apparatus,

a plurality of attributes and a data type and one or more
properties of each of the attributes from a software
requirements specification;
applying, by the test data generation computing apparatus,
constraint representation syntax to the attributes based
on the data type and the one or more properties associ-
ated with each of the attributes to generate a plurality of
constraints, wherein the constraint representation syntax
is a machine readable format;
generating, by the test data generation computing appara-
tus, a model representing one or more use cases, the
model comprising one or more conditional nodes and
including one or more of the constraints as associated
with each of the one or more conditional nodes;

identifying, by the test data generation computing appara-
tus, a plurality of paths included in the model; and

applying, by the test data generation computing apparatus,
a test input data generation technique to generate test
input data for each of the paths based on the one or more
constraints associated with the one or more conditional
nodes of each of the paths.

2. The method of claim 1 wherein the applying the con-
straint representation syntax further comprises generating a
representation for each attribute associated with a string data
type, a numeric data type, and a Boolean data type.

3. The method of claim 2 wherein the representation for
each attribute associated with the string data type includes:

a string identifier associated with one subtype of the string

data type selected from an alphanumeric string, a char-
acter string including only alphabets, a character string
including only uppercase alphabets, a character string
including only lowercase alphabets, a character string
including special characters, and a date string; and

one or more of a length field, an include field, a not-include

field, a position field, or one or more representations of
one or more portions of the string attribute.

4. The method of claim 2 wherein the representation for
each attribute associated with the numeric data type further
includes a numeric identifier and one or more of a length field
or a decimal field.

5. The method of claim 1 further comprising testing, by the
test data generation computing apparatus, software devel-
oped based on the software requirements specification using
the generated test input data.

6. A non-transitory computer readable medium having
stored thereon instructions for generating software test input
data comprising executable code that when executed by the
processor cause the processor to perform steps comprising:

extracting a plurality of attributes and a data type and one

or more properties of each of the attributes from a soft-
ware requirements specification;

applying constraint representation syntax to the attributes

based on the data type and the one or more properties
associated with each of the attributes to generate a plu-
rality of constraints, wherein the constraint representa-
tion syntax is a machine readable format;

generating a model representing one or more use cases, the

model comprising one or more conditional nodes and

US 9,323,650 B2

11

including one or more of the constraints as associated
with each of the one or more conditional nodes;
identifying a plurality of paths included in the model; and
applying a test input data generation technique to generate
test input data for each of the paths based on the one or
more constraints associated with the one or more con-
ditional nodes of each of the paths.

7. The medium of claim 6 wherein the applying the con-
straint representation syntax further comprises generating a
representation for each attribute associated with a string data
type, a numeric data type, and a Boolean data type.

8. The medium of claim 7 wherein the representation for
each attribute associated with the string data type includes:

a string identifier associated with one subtype of the string

data type selected from an alphanumeric string, a char-
acter string including only alphabets, a character string
including only uppercase alphabets, a character string
including only lowercase alphabets, a character string
including special characters, and a date string; and

one or more of a length field, an include field, a not-include

field, a position field, or one or more representations of
one or more portions of the string attribute.

9. The medium of claim 7 wherein the representation for
each attribute associated with the numeric data type further
includes a numeric identifier and one or more of a length field
or a decimal field.

10. The medium of claim 6 further having stored thereon
instructions that when executed by the processor cause the
processor to perform steps further comprising testing soft-
ware developed based on the software requirements specifi-
cation using the generated test input data

11. An apparatus for generating software test input data,
comprising a processor coupled to a memory and configured
to execute programmed instructions stored in the memory
comprising:

extracting a plurality of attributes and a data type and one

or more properties of each of the attributes from a soft-
ware requirements specification;

applying constraint representation syntax to the attributes

based on the data type and the one or more properties

10

15

20

25

30

35

12

associated with each of the attributes to generate a plu-
rality of constraints, wherein the constraint representa-
tion syntax is a machine readable format;

generating a model representing one or more use cases, the
model comprising one or more conditional nodes and
including one or more of the constraints as associated
with each of the one or more conditional nodes;

identifying a plurality of paths included in the model; and

applying a test input data generation technique to generate
test input data for each of the paths based on the one or
more constraints associated with the one or more con-
ditional nodes of each of the paths.

12. The apparatus of claim 11 wherein the applying the
constraint representation syntax further comprises generating
a representation for each attribute associated with a string
data type, a numeric data type, and a Boolean data type.

13. The apparatus of claim 12 wherein the representation
for each attribute associated with the string data type
includes:

a string identifier associated with one subtype of the string
data type selected from an alphanumeric string, a char-
acter string including only alphabets, a character string
including only uppercase alphabets, a character string
including only lowercase alphabets, a character string
including special characters, and a date string; and

one or more of a length field, an include field, a not-include
field, a position field, or one or more representations of
one or more portions of the string attribute.

14. The apparatus of claim 12 wherein the representation
for each attribute associated with the numeric data type fur-
ther includes a numeric identifier and one or more of a length
field or a decimal field.

15. The apparatus of claim 11 wherein the processor is
further configured to execute programmed instructions stored
in the memory further comprising testing software developed
based on the software requirements specification using the
generated test input data.

#* #* #* #* #*

